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1San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
2Lawrence Livermore National Laboratory, P.O Box 808, L-414, Livermore, California 94551, USA

3TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada

The past two decades have seen a revolution in ab initio calculations of nuclear properties. One
key element has been the development of a rigorous effective interaction theory, applying unitary
transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a func-
tion of the model space size. For consistency, however, one ought to apply the same transformation
to other operators when calculating transitions and mean values from the eigenstates of the renor-
malized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two-
and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength op-
erators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix
elements in the 4He nucleus all but completely restores the invariance of the expectation values
under the transformation. We also consider a Gaussian operator with adjustable range and find at
short ranges an increased contribution from such induced three-body terms.

Ab initio calculations of atomic nuclei have become in-
creasingly successful in recent years, including first prin-
ciples calculation of astrophysically relevant fusion reac-
tions [1, 2], of the anomalously long lifetime of 14C [3],
and of the crucial Hoyle state in 12C [4]. Of particular
importance is the need to include ab initio three-body
forces, for example, in correctly describing nuclear bind-
ing energies and spectra, especially the ground state spin
of p-shell nuclei [5], the lifetime of 14C [3], and the loca-
tion of the neutron drip line for oxygen isotopes [6].
These breakthrough discoveries have been driven by

advances in computing, in effective field theory [7–10],
for the solution of the nuclear many-body problem, such
as the no-core shell model (NCSM) [11–13], and in mod-
ern effective interaction theory [14, 15]. The latter takes
the form of unitary transformations chosen to reduce the
coupling between low- and high-momentum states, which
arises from the bare nuclear interaction’s “hard core” and
leads to slow convergence in the size of the model space.
Here we focus on the similarity renormalization group

(SRG) [16, 17], which has been successful when comput-
ing nuclear properties for a variety of nuclei [14, 15, 18–
23]. Independently developed by Glazek and Wilson [24]
and Wegner [25], the SRG is a series of unitary transfor-
mations on the Hamiltonian,

Ĥs = ÛsĤs=0Û
†
s , (1)

where Ûs labels the sequence of transformations start-
ing with the initial Hamiltonian at s = 0. This can be
rewritten as a flow equation in s and an antihermitian
generator, η̂,

dĤs

ds
= [η̂s, Ĥs]. (2)

A common choice for the generator is η̂s = [T̂ , Ĥs],
where T̂ is the kinetic energy operator. This drives
the Hamiltonian towards diagonal form in momentum

space, thus weakening the coupling between low- and
high-momentum states, though other generators have
also been successful [26]. Rather than use the flow pa-
rameter, s, it is common to use λ = s−1/4, to keep track
of the sequence of Hamiltonians [19]; note that as λ de-
creases, the Hamiltonian will undergo more evolution.
While formally the transformed Hamiltonian should

be independent of the unitary transformation and specif-
ically of the SRG flow parameter, the evolution induces
higher-order terms, up to A-body, into the Hamiltonian.
Previous work has suggested that stopping at three-body
terms leads to energies mostly independent of λ [19].
There is more to physics than energy spectra however.
For instance, we want to accurately quantify electric
dipole transitions which lead to important observables
that are difficult to measure: e.g., the polarization of a
nucleus [27]; or the radiative capture 7Be(p, γ)8B, crucial
to understanding the neutrino signature of our sun [1, 28].
When using SRG-evolved Hamiltonians, for consistency
one should also evolve any other operator,

Ôs = ÛsÔs=0Û
†
s , (3)

using the same sequence of unitary transformations that
were applied to the Hamiltonian. While this can be
rewritten into a similar form as Eq. (2), it is more com-
putationally efficient to directly compute the unitary ma-
trix, Ûs [17],

Ûs =
∑

α

|ψα(s)〉〈ψα(0)|, (4)

where |ψα(0)〉 and |ψα(s)〉 are the eigenvectors of the
Hamiltonian before and after SRG evolution, respec-
tively. The transformation of Eq. (3) is then given by a
simple matrix multiplication.
Evolution of operators is one of the frontiers of renor-

malization group methods [15] and extending these tech-
niques to any operator is an important goal. A study
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of E1 and M2 transitions using the Okubo-Lee-Suzuki
unitary transformation [29] shows significant renormal-
ization at the two-body cluster level, especially for short-
ranged operators. Previous work using the SRG has fo-
cused on how the operators change in momentum space
[30]. The work presented in this Letter aims to evolve
operators via the SRG, including up to induced three-
body terms, and, for the first time, test the consistency
of the expectation values as a function of evolution.r.
We are interested in two areas: (1) dependence of oper-

ator expectation values on the SRG parameter, λ, when
applied to SRG evolved wavefunctions, and (2) the ef-
fect of range on the amount of renormalization that an
operator undergoes. We perform these studies in the
three- and four-nucleon systems, where we can obtain
accurately converged results for a variety of observables.
We first investigate two observables, the root mean

square (RMS) radius of the chosen nucleus, and the total
strength of the dipole transition, given by 〈Ψ0|D̂

2|Ψ0〉,
where D̂ is the dipole operator,

D̂ =
A
∑

i

(

1

2
− τzi

)

~ri, (5)

and |Ψ0〉 is the ground state wavefunction of the nucleus,
τzi is the third component of isospin and ~ri is the posi-
tion vector of the ith particle. We choose the total dipole
strength because it is used to compute important quan-
tities such as photo-absorption cross sections [31] and
electric polarizabilities [27]. Our second investigation fo-
cuses on operator renormalization as a function of range,
following a prescription similar to that of Ref. [29].
Our calculations adopt nucleon-nucleon (NN) and

three-nucleon (3N) forces derived from chiral effective
field theory (χEFT) [32, 33] and are performed with the
NCSM in a Jacobi harmonic oscillator basis [12]. This
is a translationally-invariant, antisymmetric basis trun-
cated at Nmax~Ω above the lowest many-body configura-
tion, where Ω is the harmonic oscillator parameter and
Nmax is the maximum number of excitations. We use
ground state wavefunctions calculated from three differ-
ent Hamiltonians: (1) NN-only, two-body Hamiltonian
from the SRG evolution of the NN force in the two-
nucleon space; (2) NN+3N-induced, three-body Hamil-
tonian from the SRG evolution of the NN-force in the
three-nucleon space; and (3) NN+3N, SRG Hamiltonian
obtained from evolving the NN plus initial 3N forces in
the three-nucleon system. We construct these Hamiltoni-
ans in the same manner as Ref. [18]. The only difference
between NN+3N-induced and NN+3N is the inclusion of
the initial three-body interaction in the latter, which sim-
ply causes an overall shift in the value of our observables,
similar to that found in energies [18].
Because we work in relative coordinates, all operators

considered here are two-body operators. Similar (but
not quite parallel) to our three classes of Hamiltonian,

we consider three stages of operator evolution: (1) bare
or unevolved operator; (2) 2B evolved, SRG-evolution of
the operator in the two-body space; and (3) 3B evolved,
SRG-evolution of the operator in the three-body space,
allowing the induction of three-body terms.
We first verified that the two- and three-body SRG

transformations of external operators are unitary in the
two- and three-nucleon systems, respectively. To this end
we calculated the expectation value of the renormalized
r̂2 operator on the ground state wavefunctions of 2H and
3H nuclei. Fig. 1 shows the RMS radii of 3H for the three
levels of operator evolution described previously, with a
range of λ from 1.5 fm−1 to 3.0 fm−1 and ~Ω = 20 MeV.
This range of λ has shown to improve convergence for en-
ergy calculations [18]. To obtain converged expectation
values we truncate the A = 2 model space at Nmax = 300
and the A = 3 model space at Nmax = 46, denoted as
NA2max and NA3max, respectively.
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FIG. 1. (color online). 3H RMS radius as a function of
SRG evolution parameter, λ. Shown are results obtained with
wavefunctions from two Hamiltonians: NN+3N-induced (blue
dashed line) and NN+3N (red solid line), and three levels of
operator evolution: bare operator (circles), operator evolved
in the two-body space (squares), and operator evolved in the
three-body space (triangles). The dotted line is the RMS ra-
dius calculated using the bare Hamiltonian and bare operator.

As expected, when using the bare operator the RMS
radius has a clear dependence on λ even when the Hamil-
tonian includes three-body SRG induced terms. When
the operator is evolved in the two-body space, the de-
pendence is reduced but still significant. However, when
evolved in the three-body space there is no dependence
on λ because both the Hamiltonian and the r̂2 operator
include all SRG induced terms, thus the transformation
is exactly unitary. The dotted line in Fig. 1 represents
the expectation value calculated using the bare Hamil-
tonian and bare operator, which exactly matches the 3B
evolved, NN+3N RMS radius calculation, thus confirm-
ing unitarity. As λ increases, the radius tends to con-
verge to the bare value which is due to smaller induced
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terms affecting the operator. The trade off, however, is
much slower convergence within the chosen model space,
which would be prohibitive in larger systems, where the
accepted range of λ is between 1.8 and 2.0 fm−1.

We next extend these calculations to 4He, and compute
the RMS radius and total strength of the dipole transi-
tion. Fig. 2 shows these three calculations in a range of
λ from 1.5 to 3.0 fm−1 with ~Ω = 28 MeV. We truncate
the A = 2 model space at NA2max = 300, the A = 3
model space at NA3max = 40, and the the A = 4 space at
Nmax = 18 which leads to converged results of less than
0.1% for both observables. Results for the ground state
energy, in this range of λ, have been studied in detail pre-
viously [19]. We show them here, panel (a), to emphasize
that when one does not include SRG induced three-body
terms into the Hamiltonian, (NN-only curve), the ground
state energy is dependent on λ over the entire range we
investigate. However, when the three-body terms are in-
cluded, the ground state energy is independent of λ above
1.8 fm−1. Below λ = 1.8 fm−1 the binding energy drops
due to the missing four-body SRG induced terms.
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FIG. 2. (color online). Calculations of 4He ground state en-
ergy (a), RMS radius (b), and total strength of the dipole
transition (c) for Nmax = 18, with a range of λ from 1.5
fm−1 to 3.0 fm−1. The purple dot-dashed line indicates re-
sults obtained with the NN-only Hamiltonian. The dotted
line indicates the expectation value computed using the bare
Hamiltonian and bare operator. See also caption of Fig. 1

Panels (b) and (c) show the results for the RMS radius
and total strength of the dipole transition, respectively.

The trends of these results are similar because the op-
erators are closely related [31]. When using the bare
operator, the observable has a significant λ dependence
at small values. However, when evolved in the two- and
then in the three-body space, independence is all but re-
stored. The transformation is not completely unitary due
to the SRG induced four-body terms that we do not in-
clude. This causes a slight increase in the RMS radius
and total strength of the dipole transition as λ decreases,
shown as the difference between the 3B evolved, NN+3N
curve and the dotted line for both observables. Around
3.0 fm−1 the results begin to converge for the same reason
as the 3H results above.
Our investigation so far has considered two long range

operators, r̂2 and D̂2, and has shown a relatively small,
but non-trivial, renormalization. To highlight the im-
portance of operator range when using the SRG method,
in combination with operators evolved in the three-body
space, we use a Gaussian two-body operator of range a0,

Ô(~r1, ~r2) = A exp

(

−
(~r1 − ~r2)

2

a20

)

, (6)

where A is the normalization chosen to be

A

∫

exp

(

−
r2

a20

)

d~r = 1. (7)

This follows a similar prescription to that of Ref. [29],
where the authors focus on operator range and Okubo-
Lee-Suzuki renormalization. Although this operator does
not represent any physical phenomena, one can eas-
ily adjust its range, giving us a systematic way to ex-
plore the amount of renormalization for operators evolved
via SRG. We define the amount of renormalization as
(〈Ôeff〉− 〈Ôbare〉)/〈Ôbare〉×100. Fig. 3 shows the results
using the same 4He ground state wavefunction as above.
At short ranges the expectation values computed with

the SRG evolved operator, whether evolved in the two-
or three-body space, are significantly renormalized from
the bare operator, while as the range increases, the renor-
malization tends towards zero. More interesting is the
three-body contribution to the overall renormalization,
shown as the difference between the expectation values
of the operator evolved in the two-body space and that
of the operator evolved in the three-body space for the
same value of λ. This three-body contribution tends to
decrease with increasing operator range for all values of
λ. Thus, longer range operator will be less effected by the
SRG induced higher-order terms. Beyond λ = 2.5 fm−1,
the renormalization percent is close to zero for all but
the shortest ranges, so we do not show larger values of
λ here. This shows that the amount of renormalization
that occurs to an operator is highly dependent on that
operator’s intrinsic range, confirming, and extending on,
previous work done in the two-body space [29, 30].
In summary, we have, for the first time, SRG evolved

several operators in the two- and three-body spaces and
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FIG. 3. (color online). Renormalization percent as a func-
tion of range of a Gaussian operator, see Eq. (6), for three
values of the SRG parameter, λ: 1.5 fm−1(solid line), 2.0
fm−1(dashed line), and 2.5 fm−1(dot-dashed line). Symbols
as in the caption of Fig. 1. The wavefunction is from NN+3N
SRG evolved Hamiltonian.

computed expectation values using ground state wave-
functions of 3H and 4He. For A = 3 this completely
restored unitarity, that is, independence of the SRG evo-
lution parameter λ. Including up to three-body induced
terms in the A = 4 system, the dependence on λ was
dramatically reduced, but not eliminated, due to the in-
duced four-body terms. By using a Gaussian operator
with adjustable range, we demonstrated the relative size
of the induced three-body terms were larger for shorter
ranges. Future work should include adding the ability
to evolve non-scalar operators, which would allow us to
investigate other quantities such as transition strengths
and cross-sections. We should also extend these calcula-
tions to heavier systems (e.g. A = 5 - 12), where one will
have to transform to single particle coordinates for use
in the lab frame to be computationally feasible.
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